) Open Journal of
°°° Mathematical Sciences

[P |
PSR Press

Article

Covering radius of repetition codes over F, + vF, + v?F>
withv® =1

Sarra Manseri”* and Jinquan Luo!

1 Department of Mathematics and Statistics, Central China Normal University, Wuhan, China.

*  Correspondence: 201810800020@zjnu.edu.cn
Received: 9 February 2020; Accepted: 22 April 2020; Published: 31 May 2020.
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1. Introduction

or more than a decade, codes over finite rings have gotten much attention of researchers due the
F definition of Gray map [1-3]. Particularly, codes over the ring F, + vF, + v>F, have been extensively
studied [4,5].

The covering radius is very interesting topic in coding theory. First time, the covering radius of binary
linear codes were studied by Helleseth et al., [6]. Furthermore, covering radius of linear codes over F, + uF,

with u? = 0 was determined by using Lee distance, Chinese Euclidean distance, and Bachoc distance [7-9].

Recently, the covering radius of codes over Z; have been determined by using lee weight and Chinese
Euclidean lee weight [10,11]. In [11], Manoj et al., introduced new reduction and torsion codes, repetition
codes for octonary codes and determined its covering radius. Chatouh ef al., [12], Pandian et al., [13] gave
the upper and lower bounds on the covering radius of some classes of codes over rings Z, x Z4, Zy x R with
R = F2 + vF2,v? = v respectively. Panchanathan et al., in [14] studied bounds on covering radius for various
repetition codes with respect to different and similar length over F, + uF, + u?F, with u® = 0 using Lee weight
and generalized Lee weight.

The goal of this paper is to investigate the covering radius of repetition codes over the finite ring F, +
vE, + v2F, with v® = 1.

2. Preliminaries

2.1. The overview of the ring M = F, + uF, + u?F, with 13 =1

Some basic information about the finite ring M have been recalled as follows:

Let F, = {0,1} be the binary Galois field of two element. Further, let M is commutative ring with
characteristic 2 and 8 elements which is given by M = {0,1,v, v’ 14+ 0,14+ 0%0+0%14+0+ 0203 = 1}
[4]. The elements 1, v, v? are units of M and {0,14+ 0,1+ o+ 140+ vz} is the set of Zero-divisors of M.

The M-submodule C of M" is called a linear code having length n over M, and its elements are known
as codewords. The Hamming weight w(c) of a non-zero codeword ¢ = (cy,¢2,- - -, ¢,) of C is the number of
non-zero coordinates of element ¢, and the Hamming distance between two codewords x and y € M" which
is denoted by dy (x,y) is equal to wy (x — ).

For any m = a+ bv + cv? € M, the Gray map g from M to FJ is defined as g(m) = (a+b+c,a+b,a+c).
The Lee weight w; for an element m € M is given by wy (m) = wy(g(m)). Now, the Lee weight of the element
of M are given as:
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ZUL(O) = O,wL(l) = 3,
wy (v) = wr (v?) = wi (v +0?) =2, and
wr(1+0) =w (1+0?) =w (1+0v+0%) =1.
Lee weight of a codeword ¢ = (c¢1,¢2,- -+ ,¢n) of a linear code C is defined as w(c) = Y1 ; wr(c;), and
Lee distance between two codewords my,my of C, (with (m,my) # 0) is denoted by dy (m;,my) and defined
as dp(my, my) = wr(my —my).

2.2. Covering radius of linear codes

Definition 1. Let C be a linear code over M of length n. The covering radius of C with respect distance d,
where d € {dy,d}, is defined as:
r4(C) = max{d(x,C)|x € M"}.

Proposition 1. [15] Let C be a code generated by G over M, C' be a code generated by G over M and C" be a code
generated by <£/, i), then r4(C") < r4(C) + r4(C"). Moreover, if B be the concatenation of C and C' then r4(B) >

"

rd(C) + I’d(C )

3. Main results

3.1. Covering radius of repetition codes

In this section we represents the covering radius of repetition code over F;, as well as over M.
Let F; be a finite field of g element. Let C be a repetition code over F; of length n defined by C =

{(a, a,---,a)la € Fq} with G its generator matrix G= (a a - a). Hence C is [n,1,n]-code over M, and

according to [16], the covering radius of C is equal to {n(qql)J , and the covering radius of [n(q —1),1,n(q —

1)]-codes over F; with generator matrix (1,1,. <, 1 ag,ap,- - an| - ag-1,85-1," " ,aq,l) is equal to
V(ﬂl - 1)2J _

q
Theorem 1. Let Cy be unit repetition code of generator matrix Gy = (1 1 .- 1) and C, be zero-divisor repetition
code with generator matrix Gy = (1 +v 140 - 1+ v) and Cg be zero-divisor repetition code with generator
matrix Gy = (1+v+vz 1+v+02 - 1+v+vz>. Then we have

i) Cyis [n,8,dy = n,d;, = 3n]-code over M and ry, (C;) = 32,
ii) Cpis[n,4,dy = n,dp = n]-code over M and 4 {ZJ <14, (C2) <2n,
iii) Czis [n,2,dy = n,d; = n)-code over Mand | 4| < ry, (C3) < .

Proof. i) Since C; = {a.(1,1,---,1)la € M} is linear code of length n and 8 elements, dy(C;) =
min{wgy(c)|c € C,c # (0,0,---,0)} = nand d;(C;) = nwy (1) = 3n. So C; is [n,|C1| = 8,n,3n]-code
over M. Now, we will prove that 4, (C;) = 3.
Let x € M", and

w( be the number of coordinate has 0 component,

wy the number of coordinate has 1 component,

wy the number of coordinate has v component,

w3 is the number of coordinate has v> component,

w4 the number of coordinate has 1 + v component,

ws the number of coordinate has 1 + v? component,

wg is the number of coordinate has v + v? component, and

wy be the number of coordinate has 1+ v + v? component.
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We also have

and

w(x) = wow (0) + wywr (1) + wawp (v) + wsw,(v?) + wawr (1 +0) + wswr (1 + 0?) + wewy (v + v%)
+wywp (1+ 0+ v?) = (wy + ws + wy) + 2(wy + w3 + we) + 3ws.

dr(x,00..0) = (wq + ws + wy) + 2(wy + w3 + we) + 3w = n — wy + 2wy + wy + w3 + we,

dp(x,11..1) = wp (x — 11..1) = n 4 2wy — wq + wy + ws + wy.

And by the same way, we have

dr(x,v0..0) = n 4wy — wo + w3 + 2wy + we,

dy (x,020%..0%) = n + wy + wy — w3 + 2ws + W,

dr(x, 1+ vl +9v..14+0) =n+wy + 2w, — wy + ws + wy,

dp(x,1+ 0?1 +0%.1+0%) = n +wy +2w3 + +wy — ws + wy,
dp(x, v+ 0?0 + 0204+ 0?) = n + wy + wy + w3 — we + 2wy,

dp(x, 1+ 04+ 021 +0+0%.14+0+0?) = n+w; + wy + ws + 2we — wy.

So,
. 1 12 3
dr(x,C1) = min{dp(x,y)|ly € C1} < §(8n+4n) = ?n = 7”
implies
3n ”
dr(x,C1) < > Vx e M",
hence 3
n
rdL (C1) < 7
To prove the reverse inequality, take
m m m m

m _m _m _m
= 0|11 Ao w0202 21 +ol+ 01401+ 021+ 021+ 02

m mn—7m

v +v?v+ 020+ 1+o+0?14+0+02--14+04+02| € M", withm = | §].

So, we have

dr(x,00---0) =2n —4m,

dp(x,11---1) = n+4m,

(x,vv ) = n+4m,

L(x,v? v?) = n+ 4m,
dp(x,v+1v+1---v+1)=2n—4m,

(x,0* + 102 +1--- 0> +1) = 2n — 4m,
(x,0+v*0+ 0% - v+0%) =3n—12m,

dr(x, 1+v+021+v+v 1+ 0v+0%) =n+4m,
dp(x,Cy) = min{n +4m,2n —4m,3n — 12m} = n + 4m.

Q..Q..

dr
dr

Thenry (Ci) >n+4m>n+ 74 = 37” Hence, 74, (C1) = 37”

ii) Since C; = {b.(1+0v,14+0,---,1+0)|b € M} = {(0,0,---,0),(1+0,1+7v,---,1+0),(1+0%1+
0?2, 1402, (v+0%0+0% - ,0+0%)},dg(Cy) = nand dr (Cy) = n. So Cy is [1, |Cy| = 4,1, n]-code
over M.

EJ <14, (C2) < 2n. To prove g, (C2) < 2n, suppose x € M" then

Now, we prove 4 L 1
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dr(x,(0,0 ,0)) = n —wy + 2wy + wy + w3 + wg,
dL(x,(l—i-vl—i—v <, 149)) =n+w + 2wy, — wy + ws + wy,
dp(x,(14+02,14+0%,--- ,14+0%)) = n+w;y +2w3 + wy — ws +wy, and
dp(x,(v+0%,0+02,- ,0+0%)) = n+wy+ wp + w3 — we + 2w;.
Now, since wy + wy + w3 + wy < n, so di(x,Cp) = min{n — wy + 2w, +w2+w3+w6,n+w1 + 2wy —

Wy + ws + wy, 1+ wy + 2ws + wy — Ws + Wy, N+ wo + W + w3 — We + 2wy} < (4n+4(w1 +wy + w3 +
wy)) < 2n.

To prove 4 {ﬂ < 14, (Cz), suppose

Y o a1y
x=[00--014+0vlF0v--1+0[l+021+02 -1+02o+0v20+02 --0+02| € M",

then
dr(x,(0,0,---,0)) =2n—4[%],
di(x,1+9v,14+0,---,14+0)) =dr(x,(1+0*,1+0%---,1+0%)) =n, and
dp(x, (v +0%0+0% - v+0?)) =4[]
Then di (x,C2) = min{n,2n —4|%|,4|5]|} = 4] implies r4, (C2) > 4|}]. Hence we achieved our

desired result.
iif) Since Cj3 is linear code with generator matrix Gz = (1 +04+9* 14049 - 140+ 02>, then

={c(A+v+v*1+0v+7% -, 1+v+0?*)/cec M} ={(0,0,---,0),1+v+*1+0v+0%---,1+
v+02)},dy(Cs) = n,and d(C3) = n.wp (1 + v+ 0?) = n. Hence Cs is [n,2,dy = n,d; = n].
Now we prove that [ 4| < ry, (C3) < 5. To prove ry, (C3) < %, suppose x € M" then

dr(x,(0,0,---,0)) = n—wp + 2wy + wy + w3 + we, and

di(x, 1+v+0%1+0+0% -, 14+0+0%)) = n+w +wy + ws + 2we — wy.
Now, because wy + w1 + we + w7 < n,s0dp(x,C3) < +(3n — 2wy + 2wy + 2w — 2wy) implies d; (x,C3) <
5n

on Vx € M". Hence 1y, (c,) < —- 5

2
I_%J Lnj

It remains to prove | 5| < r4 (C3). For this suppose x = [00 O|1 Fot ol bot o 14t v2].

Then

d.(x,(0,0,+-,0)) = [5] and
dp(x,(1+v+01+0v+20%- -, 1+0+0%)) = 5]

Sodp(x,C3) = | 5| and by the definition of covering radius of code we have r, (¢;) > [ 5.
O

3.2. Covering radius of block repetition code over M
Theorem 2. Let Rp?l’z be a block repetition code of length 3n with generator matrix Gy, =

n n
(1TT1 U#Fv Uzﬁ#) and Rprﬁd+”2+"3 be a block repetition code of length ny + ny + nz with generator

. ; mg
matrix Gu, = <Vn11fl T R 02>‘ Then

i) the code Rpu is [3n,8,dy = 3n,dp = 3n|-code over M with rdL(Rpf[”S) =%, and
ii) the code Rp”1+”2+”3 is [ny +ny +ns3,8,dy = ny+ny +n3,dy = ny + ny + nz|-code over M with
TdL(RPn1+n2+n3) = 3(m +nz +n3).

Proof. i) Let x € M3n such that x = (x1, x2, x3) with x;,1 < i < 3is vector of n coordinates with (s, to, wp)
is the number of coordinate have 0 element in (x7, x2, x3) respectively, and



Open J. Math. Sci. 2020, 4, 168-173 172

s1,t1,w1) is1 timesin x,

(
(s2,t2,wp) is v timesin x,
(s3,t3,w3) is v* timesin x,
(s4,t4,wy) is 14+ v timesin x,
(ss,ts5,ws) is 1+ > timesin x,

(se is v+ 0% timesin x, and
(

)
)
)
)
)
)

, te, We

s7,t7,w7) is 1+ v+ 0 timesin x.

Then we have

7 7 7
ZSZ': Zt]: Zwi:n.
i=0 j=0 k=0

Letc;i—o..7 € {a (11 1 vv--ov V0% ~vz) such that « € M}. Then we have

dr(x,co) =3n —sg+2s1 + 82+ 83+ 56 — to + 28 + tr + 3 + tg — wo + 2wy + Wy + w3 + W,
dr(x,c1) =3n+2s) —s1+ 54+ S5+ 57+ tg — by + f3+ 24 + tg + wo + Wy — w3 + 2ws + W,
dr(x,c3) =3n+sg —Sp + 83+ 254 + 5S¢ + tg + to — t3 + 2t5 + tg + 2wy — w1 + Wy + w5 + W7,
dr(x,c3) =3n+2s) —s1+ 84+ 55+ 57+ tg— by + f3+ 24 + tg + wo + Wy — w3 + 2ws + wg,
dr(x,cq) =3n+81+28 — 84+ 85+ 57+ tg+ to + t3 — tg + 2t7 + w1 + 2wz + wy — w5 + Wy,
dr(x,c5) =3n+s1+253 +54— S5+ 57+t + 2 — bty +t5 + b7 + wo + wy + w3 — we + 2wy,
dr(x,ce) =3n+ 80+ 8y + 83 — g+ 287 +t1 + 2t5 + tg — t5 + t7 + w1 + 2wy — wy + w5 + Wy,
dr(x,c7) =3n+s1 +S4+S5+256757+t1+t4+t5+2t67t7+w1 + 2wy + ws + 2we — wy.

Therefore dj (x, RPUZ) = min{dp(x,c;),i = 0.7} < }(24n +4(T7_osi) +4(X o ti) +4(X7_ow;)) and
hence dj (x, Rp%l”s) < % vx e M.

In other hand by using Preposition 1 we have r,;, (Rp%ﬁ ) >3r4,(Cy) = 91

ii) The prove is similar to i) and left for the readers.
O

Theorem 3. Let C be a Dblock repetition code of length 2n  generated by G =

n n
1+0vl4v---14v 140402 1+0+02---1+0+02
M and 4[] + [ 3] <r4,(C) < 4n.

). Then the code C is [2n,8,dy = n,dp = n]-code over

Proof. By Proposition 1, we have ry, >y (C2) +14,(C3) > 4[] + |5]. Sorg, > 4[%] + 5]
Let x € M?" such that x = (xq|x) with m;,i = 0..7 is the number of coordinates have (0,1,v,7%,1+ 10,1+
v, o4+v314+0+ UZ) respectively in x7 and [;,i = 0..7 is the number of coordinates in x; have (0,1, v, v, 1+
0,1+ 02,0+ 0% 1+ v+ 0?) respectively. We conclude that Y7_,m; = Y7_I; = n.
Now let¢j;—o.7 € {a (1+vl—|—v---1—|—v 1—|—v—|—v21+v+vz---1+v—|—vz) such that « € M}, then

we have

2n —mo+2my +my +mz+mg —Ilop+2l1 + 1 + 13+ 1,
=2n+4+my+2my —my+ms+my+1 + 1y +15+2lg— 17,
C2 2n+my+my +mz —me+2my + 11 + 1y + 15 + 2l — Iy,

dL(x,co)
(x,c1)
(x,c2) =
(x,c3) =2n+mq +2m3+my —ms+my;+ 1 + 1y +15+2lg — 17,
(%, c4)
dp(x,cs)
dp(x,ce)

dp(x,c1

dr,

dy,

dr(x,cq) =2n+mq +2mz +my —ms +my — g+ 211 +1p + I3 + I,
c5) =2n+mg+mp +mz —mg+2my —lop+ 21 + 1 + 13+ 1,

X,C6) =2n+my+2my —my +ms+my —lo+ 2l + 1+ 13+ g,

dp(x,cy) =2n—mo+2my +my+mz+mg+1h +1g+15+2lg —17.

By definition of Lee distance of C, we have dy(x,C) = min{dy(x,c;),i = 0.7} < 4n for any x in M2
which implies that 74, (C) < 4n. Hence the prove is complete. []
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